Synthesis and structure of a sodium niobium(V) nitride, NaNbN₂

H. Jacobs and B. Hellmann

Fachbereich Chemie der Universität Dortmund, Postfach 500 500, W-4600 Dortmund 50 (Germany)

(Received July 25, 1992)

Abstract

Red single crystals of air-stable sodium niobium(V) nitride, NaNbN₂, were obtained by the reaction of NaNH₂ with NbN (molar ratio 10:1) at 800 °C in high pressure autoclaves for 5 days. The structure was determined on the basis of single-crystal data: $R\bar{3}m$, a = 3.144(1) Å, c = 16.942(3) Å, Z = 3, $R/R_w = 0.038/0.043$, $N(F_0^2) \ge 3\sigma(F_0^2) = 156$, N(var.) = 9. The compound has the α -NaFeO₂-type structure.

1. Introduction

Apart from Li₃N, the heavier alkali metals do not form thermodynamically stable nitrides. However, with tantalum we synthesized for the first time ternary compounds $MTaN_2$ with $M \equiv Na$, K, Rb, Cs. Their structures were characterized by powder methods on the basis of X-ray and neutron diffraction data [1]. Here we report about the synthesis of single crystals and structure determination of NaNbN₂.

2. Experimental

An excess of sodium amide reacts with NbN to give NaNbN₂:

$$NaNH_2 + NbN \longrightarrow NaNbN_2 + H_2$$

and

$$NaNH_2 \longrightarrow Na + \frac{1}{2}N_2 + H_2$$

The compound was synthesized by heating a mixture of NbN and NaNH₂ (molar ratio 1:10) for 5 days to 800 °C in high pressure autoclaves [2]. NaNbN₂ is resistant against moisture and air. The pure compound was isolated as red hexagonal platelets by washing the reaction product with water. The 1:1 composition of Na:Nb was proved by energy-dispersive X-ray analysis.

Precession photographs (Mo $K\alpha$) led to the trigonal crystal system and to the possible types of space groups R3, $R\overline{3}$, R32, R3m and $R\overline{3}m$. Intensity data were collected on an Enraf-Nonius CAD 4 diffractometer. The structure was calculated with the SDP system of programs [3]. Experimental details and positional and

thermal parameters are summarized in Tables 1, 2 and 3. Some interatomic distances are given in Table 4.

TABLE 1. Crystal data for NaNbN2 and NaTaN2 [1]

Crystal size (mm ³)	$0.025 \times 0.1 \times 0.1$		
Unit cell parameters (Å)	a = 3.144(1)		
•	c = 16.942(3)		
V (Å ³)	145.0		
Space group	R3m		
$D_{\rm x}~({\rm g~cm^{-3}})$	4.943		
$1/\mu$ (Mo K α) (mm)	0.168		
Absorption correction	Empirical method [4]		
Transmission (%)	65.1 (min. rel.)		
Radiation	Μο Κα		
Monochromator	Graphite		
Scan mode	$\omega/2\Theta$		
Θ_{\max} (deg)	60		
h, k, l	$7, \pm 7, \pm 40$		
$R_{\rm int}$ (%)	7.5		
Independent reflections	320		
Reflections with $I > 3\sigma(I)$	156		
Variables	9		
Final R/R_w $(w=1)$	0.038/0.043		
Largest peak in the	2,9		
final difference map (electrons $Å^{-3}$)			

TABLE 2. Atomic coordinates and isotropic thermal parameters for $NaNbN_2$

Site	Occupancy	x	у	z	B (Å ²)
3a	3Nb	0	0	0	0.926(9)
3b	3Na	0	0	1/2	$0.56(4)^{2}$
6c	6N	0	0	0.2683(3)	0.29(4)

TABLE 3. Anisotropic thermal parameters for NaNbN₂

Atom	$U_{11} \ (\times 10^3 \ \text{Å}^2)$	$U_{22} \ (\times 10^3 \ \text{Å}^2)$	$U_{33} \ (\times 10^3 \ \text{Å}^2)$	$U_{12} \ (\times 10^3 \ \text{Å}^2)$	$U_{13} \ (\times 10^3 \ \text{Å}^2)$	$U_{23} \ (\times 10^3 \ \text{Å}^2)$
Nb	10.2(2)	U_{11}	14.7(3)	U_{11}	0	0
Na	5.2(8)	U_{11}	11(1)	U_{11}	0	0
N	1.2(9)	U_{11}	8(1)	U_{11}	0	0

TABLE 4. Interatomic distances (Å) for NaNbN2 and NaTaN2 [1]

	NaNbN ₂		NaTaN ₂ [1]
Nb-N	6×2.123(2)	Та-	2.114(1)
-Na	$6 \times 3.357(0)$		3.359(0)
-Nb	$6 \times 3.144(0)$	–Ta	3.134(1)
Na-N	$6 \times 2.502(3)$		2.509(2)
-Na	$6 \times 3.144(0)$		3.134(1)
N-N	$3 \times 2.855(5)$		2.837(4)
	$6 \times 3.144(0)$		3.134(0)
	$3 \times 3.894(6)$		3.918(4)

3. Discussion

For the first time we were able to grow single crystals of a ternary niobium nitride with sodium. The structure determination on NaNbN₂ reveals that this compound crystallizes isotypically to NaTaN₂ [1], both with the α -NaFeO₂-type structure [5]. In a cubic close-packed arrangement of nitrogen octahedral holes are occupied by sodium and tantalum in the following sequence:

··· | A Na B Ta C Na A Ta B Na C Ta | · · ·

The distance d(Nb-N) = 2.123 Å is nearly the same as in NaTaN₂ with d(Ta-N) = 2.114 Å and for so-dium-nitrogen d(Na-N) = 2.502 Å and 2.509 Å respectively.

We hope that we can prepare single-crystals of ternary nitrides $MNbN_2$ even with the heavier alkali metals $M \equiv K$, Rb, Cs and determine exact crystal structure data.

Acknowledgments

Financial support was given by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

References

- H. Jacobs and E. v. Pinkowski, J. Less-Common Met., 146 (1989) 147.
- H. Jacobs and D. Schmidt, in E. Kaldis (ed.), Current Topics in Materials Science, Vol. 8, North-Holland, Amsterdam, 1981, p. 379.
- 3 B. A. Frenz, in H. Schenk, R. Olthof-Hazekamp, H. van Konigsveld and G. C. Bassi (eds.), *Computing in Crystallography*, Delft University Press, Delft, 1978, p. 64.
- 4 A. C. T. North, D. C. Philipps and F. Scott Mathews, Acta Crystallogr., A, 24 (1968) 351.
- 5 S. Goldsztaub, Bull. Soc. Fr. Minér., 58 (1935) 6.